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Abstract—We examine the problem of solving many thou-

sands of small dense linear algebra factorizations simultane-

ously on Graphics Processing Units (GPUs). We are interested

in problems ranging from several hundred of rows and columns

to 4 × 4 matrices. Problems of this size are common, espe-

cially in signal processing. However, they have received very

little attention from current numerical linear algebra libraries

for GPUs, which have thus far focused only on very large

problems found in traditional supercomputing applications

and benchmarks. To solve small problems efficiently we tailor

our implementation to the GPUs inverted memory hierarchy

and multi-level parallelism hierarchy. We provide a model

of the GPU memory subsystem that can accurately predict

and explain the performance of our approach across different

problem sizes.

As a motivating example, we look at space-time adap-

tive radar processing, a real-time application that requires

hundreds of independent QR factorizations of small complex

matrices (e.g. 240 × 66). For realistic matrix sizes from a

standard radar processing benchmark, our implementation on

an NVIDIA Quadro 6000 GPU runs 2.8× to 25× faster than

Intel’s Math Kernel Library (MKL) on an Intel Core i7-2600.

For the QR factorizations of 5,000 56 × 56 single-precision

matrices, our approach runs 29× faster than MKL and 140×
faster than the state-of-the-art linear algebra library for GPUs.

In each of these cases we are using the GPU’s hardware-

accelerated division and square root functions that are accurate

up to 22 mantissa bits.
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I. INTRODUCTION

Dense linear algebra routines such as solving systems of
equations, least squares, and eigenvalue problems are widely
used across the computational sciences. Accordingly, it is
worthwhile to study these problems closely and tune the
algorithms and implementation styles to new architectures.
Several linear algebra libraries are currently available for
hybrid CPU+GPU systems that achieve near peak matrix-
multiply performance for large, dense factorizations. In this
case large means thousands of rows and columns. Unfortu-
nately, current GPU libraries are not able to efficiently solve
small problems, where small means matrix sizes from 4x4
up to several hundred rows and columns. For example, in the
MAGMA linear algebra library for GPUs, QR factorizations
smaller than 96 columns wide are copied to the CPU and
factored while the GPU sits idle. This is not an arbitrary
decision on the part of these libraries. Code that can factor
entire matrices on the GPU typically does not exist.

Small problems do not provide enough work or paral-
lelism to saturate the GPU and they can be solved with
relatively low latency on CPUs. However, there are a great
number cases in which many independent small to medium-
size problems need to be solved simultaneously. For linear
algebra specifically, these problems arise in a diverse range
of applications in which performance matters. One example
is MRI reconstruction, which requires solving up to a billion
small (8x8 or 32x32) complex eigenvalue problems, one
for each voxel in an MRI image, and requires high perfor-
mance for clinical applicability [16]. Space-time adaptive
processing, used in real-time radar signal processing, re-
quires hundreds of simultaneous complex QR factorizations
of size 240x66 and is typically limited by the process-
ing capabilities of the radar system [8][20]. To compute
observation probabilities with a Gaussian mixture model,
large-vocabulary continuous speech recognition applications
multiply thousands of 79x16 matrices roughly every one-
tenth second [12].

The challenge of factoring small matrices on GPUs has
been pronounced in several recurring threads on the CUDA,
CULA, and MAGMA online forums [1][3][4]. It was also
cited by the developers of the CULA GPU linear algebra
library as an important unsolved problem currently under
investigation [2].

Dealing with many small (e.g. 100x100) matrices on the
GPU is different than dealing with large matrices (e.g. sev-
eral thousands of rows and columns). This is because these
two classes of matrices benefit from a different mapping
onto both the memory hierarchy and parallelism hierarchy of
today’s GPUs. Specifically, we distribute independent prob-
lems across different multiprocessors and solve them entirely
in the multiprocessor register file. In order to understand the
design space, we develop a performance model for the GPU
that considers both global and intraprocessor communication
and we measure relevant parameters with microbenchmarks.
This model accurately predicts and explains our performance
across different problem sizes.

On a realistic radar processing benchmark, our QR imple-
mentation on an NVIDIA Quadro 6000 GPU runs 2.8× to
25× faster than Intel’s Math Kernel Library (MKL) on an
Intel Core i7-2600, where each core is assigned a subset
of the problems. For 5,000 56 × 56 single-precision QR
factorizations we are 140× faster than the existing GPU



library that is designed and tuned for large matrices, and
29× faster than MKL. In each of these cases we are using
the GPU’s hardware-accelerated division and square root
functions that are accurate up to 22 mantissa bits. We also
show large speedups on the LU factorization and solving
systems of linear equations with Gauss-Jordan elimination,
although we do not pivot for stability for these problems.

To summarize, our work makes the following three con-
tributions:

• We present solutions to efficiently solve small QR
decomposition, LU decomposition, linear systems, and
least-squares problems on GPUs 1

• We present an analytical model that accurately predicts
GPU performance for these problems by considering
both global and intraprocessor communication

• Our performance for these small problems is up to
140× faster than the existing state-of-the-art GPU
linear algebra libraries, and up to 29× faster than Intel
MKL on a state-of-the-art multicore CPU

We begin by motivating our GPU performance model
and deriving relevant parameters from microbenchmarks in
Section II. We describe the algorithmic approaches used for
our linear algebra kernels in Section III. We describe our
approach for solving problems in the register file and thread
block, respectively, in Sections IV and V. We discuss and
analyze other existing and potential approaches to solving
these problems in Section VI. We describe how to apply
one of these approaches to solve a common radar processing
problem in Section VII. Finally, we present conclusions in
Section VIII.

Quadro 6000
Number of multiprocessors (SIMT unit) 14

Total number of FPUs 448
Core clock rate 1.15 GHz

Max registers per FPU 64
Shared memory per SIMT unit 64 kB

Global memory bandwidth 144 GB/s
Global memory size 6 GB

Peak SP flops 1.03 TFlop/s
Peak SP per FPU 2.3 GFlop/s

Table I
SUMMARY OF THE NVIDIA GF100 CHIP AND THE QUADRO 6000

II. GPU PERFORMANCE MODEL AND
MICRO-BENCHMARKS

A. Hardware Overview

The architecture and programming model of contempo-
rary programmable GPUs has been widely documented in
other work [19]; however, we provide a quick review of
the salient features of the GF100 relevant to our work.
The GF100 variant used in our NVIDIA Quadro 6000 has

1Source code is available at http://www.cs.berkeley.edu/ mjanders/

14 multiprocesssors, each of which has 32 single-precision
FPUs operating at 1.15 Ghz. The combined throughput of
GF100 is 1.03 Tflops/sec. Individual tasks are executed on
the multiprocessors in units called thread blocks. Threads ex-
ecuting in a thread block synchronize and share data through
a KB scratchpad memory called “shared memory”. Global
memory (DRAM) is shared between all multiprocessors and
has a peak bandwidth of 144 GB/sec. A small 768 KB
L2 cache shared between all multiprocessors is used as a
bandwidth amplifier.

Mapping small problems into the architecture is not
immediately obvious due to the complex architecture. Our
characterization focuses on the bandwidth and latency at
each level of the GF100 memory hierarchy in a desire
to understand and predict the performance of small linear
algebra kernels on the GPU. To that end, we use two simple
models to predict GPU performance when operands are
stored in global or shared memory. Our model is based on
the LogP model for distributed systems [10]. The global
model is defined in Equation 1 while the shared memory
model is shown in Equation 2.

τgbl = #msg × αglb +msize× βglb + flops× γ (1)

τlcl = #msg×αsh+nsync×αsync+msize×βsh+flops×γ
(2)

Our model has three key parameters: α, β, and γ. Total
time is the sum of the costs of memory bandwidth (βglb or
βsh), global latency (αglb or αsh), and time per FLOP (γ).
The shared memory model also considers a synchronization
cost between threads (αsync). As we will show later, we
do not need to overlap global and local computation for
the problems considered in this paper and therefore we can
consider these two models separately.

A suite of microbenchmarks were used to record values
for the parameters in our model. The details of the latency
benchmarks are presented in Section II-C and bandwidth
benchmarks in Section II-B. Finally, Table IV presents
values all the parameters used in our model.

B. Bandwidth measurements

1) Shared memory bandwidth (βsh): We measure shared
memory bandwidth by repeatedly issuing load instructions
to shared memory and accumulating results into the register
file. We believe the overhead of the add instruction used
to accumulate is hidden by the superscalar pipeline in the
GF100 microarchitecture. The shared memory and integer
operations use independent functional units and should be
able to execute simultaneously. Our source for the shared
memory bandwidth benchmark is shown in Listing 1. Our
experiments yield a peak of 880 GB/s from all shared
memories (14) on the Quadro 6000. By comparison, the



theoretical peak bandwidth for the Quadro 6000 is 1030
GB/s (14 SIMT units * 32 banks * 4 bytes per cycle *
575 MHz). We are able to achieve 85.4% of peak shared
memory bandwidth; by comparison, we are able to achieve
only 75% of global memory bandwidth (section II-B2)

s h r s t a r t = c l o c k ( ) ;
f o r ( i n t i =0 ; i<NITRS ; i ++)

f o r ( i n t j =0 ; j<NCOPIES ; j ++)
acc [ j ] += sMem[ t i d + j ∗2 5 6 ] ;

s h r s t o p = c l o c k ( ) ;

Listing 1. Shared memory copy

2) Global memory bandwidth (βglb): The stated DRAM
bandwidth of our Nvidia Quadro 6000 is 144 GB/s (384-
bits * 3 GHz). As shown in Listing 2, we perform a
copy of a 16 MB array to measure peak achievable global
memory bandwidth. The runtime is computed by taking
timestamps on the host CPU using the gettimeofday()
function. On our Quadro 6000, our approach yields 108
GB/s, while vendor-provided copy routine, cudaMemcpy,
yields 84 GB/s. Our simple copy code achieves 75% of peak
DRAM bandwidth while cudaMemcpy achieves 58.3% of
peak.

f o r ( i n t i = 0 ; i < NUNROLL; i ++)
gb l y [ i ∗SIZE+ i d x ] = gb l x [ i ∗SIZE+ i d x ] ;

Listing 2. Global memory copy

Table II shows the a summary of measured bandwidth
from shared memory and global memory.

GB/s
Shared memory (per core) 62.8
Shared memory (all cores) 880

Global memory 108

Table II
BANDWIDTH FOR EACH LEVEL OF THE GF100 MEMORY HIERARCHY IN

CYCLES AND MICROSECONDS

C. Latency measurements

1) Shared memory latency (αsh): Our latency measure-
ments issue a series of dependent reads in order to deter-
mine memory latency. We measure memory latency with
the following procedure: recording a time stamp using the
CUDA clock() function, performing pointer chasing to issue
a series of dependent reads, recording a final time stamp, and
computing the average cycles per memory operation. Our
pointer chasing benchmark is similar fashion to both Volkov
[21] and Wong [23]. We are unable to find GF100 shared
memory latency numbers; however, our latency benchmark
gives identical results to Volkov’s published numbers when
we run our benchmark on G80 (36 cycles).

Due to changes in the ISA, implementing a pointer
chasing benchmark in shared memory on GF100 presents
some minor challenges. On G80, the result of a shared
memory load can be combined with an arithmetic operation.
The ability to fuse an arithmetic operation with a shared
memory operation eliminates address computation in pointer
chasing code. The subsequent GF100 architecture eliminated
the ability to fuse a shared memory operation with an
arithmetic operation, introducing additional address compu-
tation arithmetic into the benchmark code. Without careful
implementation of the pointer chasing benchmark, nvcc is
unable to disambiguate load operations, and it may mistak-
enly emit global instructions (GF100 opcode LD) instead
of shared memory loads (GF100 opcode LDS). While the
address space is unified on GF100, we measured a penalty
of approximately 14 cycles to access shared memory with a
global memory instruction. We used Nvidia’s cuobjdump

to generate assembly listings for each microbenchmark
to ensure our microbenchmarks were not encumbered by
unnecessary address generation instructions.

p r e c h a s e = c l o c k ( ) ;
f o r ( i n t i = 0 ; i < NCHASE; i ++)

acc = sMem[ acc ] ;
p o s t c h a s e = c l o c k ( ) ;

Listing 3. Shared memory pointer chasing

We experiment with implementations to address this prob-
lem. One implementation uses bytes instead of integers.
Another implementation uses integers, but we subtract the
overhead of the address computation. Listing 3 shows the
source code skeleton for both implementations. sMem uses
“char” for the byte implementation and the “int” datatype
for the integer implementation.

We measure a latency of 18 (the arithmetic pipeline
length) for the shift operation (GF100 opcode SHL.W) used
in address calculation, while the latency of the combination
of both the shared memory load and shift instruction to be
45 cycles. This approach yields 27 cycles for shared memory
latency. Our other approach uses pointer chasing with bytes
as operand storage. Using bytes eliminates the need for a
shift at the expense of a possible penalty for byte operations.
Our byte pointer chasing benchmark yields the exact same
results as our other approach.

We believe 27 cycles for shared memory latency is
reasonable given Nvidia’s focus on the memory subsystem
of GF100. In addition, we believe our methodology is sound
given that our benchmark code matches existing results
when run on G80.

2) Global memory latency (αglb): We measure global
memory latency using pointer chasing. Unlike shared mem-
ory, the latency of global memory is significantly larger
than any required arithmetic instructions used for address
calculation. Figure 1 shows global memory latency when
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walking through an array with a stride from 1 word to 64M
words.

We do not show the source code for the global memory
latency benchmark because it is significantly similar to the
shared memory code shown in Listing 3.

Table III shows the a summary of the latency of each level
of the memory hierarchy.

Cycles
Shared memory 27
Global memory 570

Table III
LATENCIES FOR EACH LEVEL OF THE GF100 MEMORY HIERARCHY IN

CYCLES AND MICROSECONDS

D. Synchronization latency (αsync)
The CUDA programming model allows threads executing

on a single multiprocessor to synchronize through a call
to syncthreads(). As the synchronization latency is a
function of the number of threads active in a multiprocessor
we have plotted thread latency in Figure 2.

III. LINEAR ALGEBRA ALGORITHMS

We focus on the following basic linear algebra factoriza-
tions, that solve systems of linear equations, least squares,

Quadro 6000
Global memory latency (αgbl) 570 cycles

Global memory inverse bandwidth (βgbl) 1
108 s/GB

Shared memory latency (αsh) 27 cycles
Shared memory inverse bandwidth (βsh) 1

880 s/GB
Synchronization of 64 threads in a SIMT (αsync) 46 cycles

Pipeline latency for FP operations (γ) 18 cycles

Table IV
RELEVANT PARAMETERS FOR OUR MODEL OF GPU PERFORMANCE

and are building blocks for many more complex algorithms
[11]. All of these factorizations have arithmetic complexity
O(n3) and operate on a matrix that has O(n2) words. As
a result, these algorithms can generally be made compute-
bound for most architectures and problem sizes.

A. Gauss-Jordan Elimination
This algorithm solves a system of equations Ax = b

by converting A to reduced row echelon form using row
operations and applying the same operations to the vector
b producing x. We do not do any pivoting in this imple-
mentation. The vector b is attached to the right side of the
matrix. We proceed from left to right, scaling each row by
the diagonal element and updating everything to the right
of the current column with an outer product of the scaled
row and current column. This algorithm performs n3 FLOPs
where n is the dimension of the matrix.

B. LU
The LU factorization is a FLOP-efficient method of solv-

ing linear systems. Instead of reducing the matrix to reduced
row echelon form, LU produces a lower triangular matrix
L and upper triangular matrix U such that A = LU . The
solution to LUx = b can then be solved using forward and
backward substitution. Our implementation does not pivot so
the output of the factorization is simply the lower triangular
L and the upper triangular U written over the original matrix
A. We proceed from left to right, scaling each column by
the diagonal element and updating the Schur complement
with the outer product of l, the scaled column, and u, the
current row. This algorithm performs 2

3n
3 FLOPs.

C. QR
The QR factorization decomposes an m×n matrix A into

an orthogonal matrix Q and an upper triangular matrix R.
This is a numerically stable way to solve least squares (when
m > n) and systems of linear equations (when m = n).
There are several algorithms that can be used to compute
the QR factorization of a matrix. For example, one could
use any of the following algorithms: Cholesky QR, Gram-
Schmidt, Givens rotations, or Householder reflectors. Unfor-
tunately, Cholesky QR and Gram-Schmidt are numerically
unstable, so we are limited to using either Givens rotations or
Householder reflectors. We use the Householder algorithm
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Figure 3. Simplified GPU model for the one-problem-per-thread approach.
The register files (RF) of each thread’s processing element (PE) are
connected to a global bus which is capable of moving data at the speed of
global bandwidth (βglb). Once in the register file, all FLOPs performed on
the data are considered to be free.

because it is consistent with LAPACK. The Householder QR
algorithm performs 2mn2 − 2

3n
3 FLOPs.

D. Least Squares
Least squares can be solved using QR by rewriting the

the normal equations (ATAx = AT b) in terms of Q and R
((QR)T (QR)x = (QR)T b) that simplify to Rx = QT b. So
we simply have to find the QR factorization of A, apply QT

to b, and solve the resulting upper triangular system for x.
Note that this is more numerically stable than solving the
normal equations directly. We compute QT b by appending
b to the right side of the matrix during the factorization. We
then solve the upper triangular system using row operations.
The total number of FLOPs done in our least squares solver
is 2mn− 2

3n
3 + 1

3n
3.

IV. ONE PROBLEM PER THREAD

For very small problems (e.g. n < 16) it is possible for
each thread to store most of the matrix in its register file and
solve the problem serially. Each thread works independently
and there is no communication between threads. We choose
to register allocate the matrix rather than relying on the
L1 cache or shared memory because the register file is
significantly faster and over twice the size as these other
memories. Register array indices must be known at compile
time, so we unroll loops using #pragma unroll and
C++ templates. Problem sizes that exceed the maximum
number of registers available per thread automatically spill
into the L1 cache and eventually into DRAM. On GF100, the
maximum number of registers per thread is limited to 64. We
use the compiler flag --use_fast_math that allows for
the use of hardware reciprocal and square root functions that
are accurate up to 22 mantissa bits [18]. In this approach,
the median performance penalty for not using these hardware
functions is 5.6%.

To understand the performance of this approach we con-
sider the simplified model pictured in Figure 3 and described
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Figure 4. Performance for 64000 independent small QR and LU (No
pivoting) factorizations. The dashed lines indicate model-predicted perfor-
mance. For dimensions past 8 the problems no longer fit in the register file
and the problems run at the speed of DRAM.

in Section II. We assume that FLOPs are free (γ = 0) and
the register file is infinite. We only count the bandwidth
cost between DRAM and register files, as specified by
the global DRAM bandwidth (βglb). We also choose to
ignore global DRAM latency (αglb = 0) since we assume
this latency is sufficiently hidden through multi-threading.
Expected performance is simply the product of the problem’s
arithmetic intensity and the global DRAM bandwidth [22].

A problem’s arithmetic intensity is the total number of
FLOPs performed divided by the total number of words
moved. For example, a 7× 7 single-precision QR factoriza-
tion performs 4

3mn2− 2
3n

3 = 457 FLOPs. The entire matrix
must be read and written which generates DRAM traffic
of 2 × 7 × 7 × 4 bytes = 392 bytes. Thus, the arithmetic
intensity of this problem is 457

392 = 1.17 FLOPs/byte. Our
measured bandwidth is βglb = 108 GBytes/s. We can
expect 1.17×108 GBytes/s = 126 GFLOPS, which roughly
matches the measured performance.

Figure 4 shows the expected and measured performance of
both LU and QR factorizations for problems of size n = 3 to
12 with the one-problem-per-thread approach. Performance
follows arithmetic intensity nearly perfectly for both LU and
QR until n = 8, at which point the problem no longer
fits in the register file and spills to L1 and DRAM. For
problems where the matrix fits in the register file (n < 8)
we can say that the bandwidth cost of reading in and out
the matrix presents an upper bound on performance. This
implementation is optimal in that case.

We could extend the one-problem-per-thread approach to
larger problems and potentially sustain the same high per-
formance by using blocked algorithms within a thread [13].
However, for a single-level memory hierarchy such as the
GPU’s, the performance of this approach would even then
face theoretical limits determined by the amount of global
bandwidth and the amount of local storage per thread and
regardless of the blocking strategy or algorithm [6]. Another
approach is to assign multiple threads to work together to
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Figure 5. Complete GPU model for the one-problem-per-block approach.
Each thread block can access DRAM at the speed of global DRAM
bandwidth (βglb). Once the data is inside the thread block, it can be stored
in the thread’s register files (RF) or in shared memory. All threads can
access shared memory with a bandwidth (βsh) and latency (αsh). A FLOP
takes γ cycles and the operands must be in the register file.

solve one problem. This approach can increase the amount of
local storage per problem and thus the arithmetic intensity.
This approach is analyzed next.

V. ONE PROBLEM PER BLOCK

In the previous section we considered the case in which
every thread on the GPU loaded a small matrix into its
register file and performed a factorization locally. However,
if multiple threads work together in a block (e.g. 64 or 256
threads), then we can factor larger matrices without having
to communicate with DRAM. One benefit of larger matrices
is increased arithmetic intensity. On GF100, 256 threads
can store a 112x112 single-precision matrix in a distributed
fashion with each thread storing a 7x7 sub-matrix. A QR
factorization on a 112x112 matrix performs 1.87 MFLOPs
while moving only 100 KBytes of data to and from DRAM.
Following the simple bandwidth-only model from Section
IV tells us the potential performance of this problem is over
2 TFLOPS, which is beyond the max theoretical arithmetic
throughput for the chip.

Since the problem is no longer bandwidth-constrained,
the costs of doing arithmetic, communicating data between
threads in a block, and synchronizing within a block are
clearly going to limit performance. These costs are captured
by the γ, αsh, βsh, and αsync parameters, respectively. The
complete model that is used to understand this approach is
drawn in Figure 5.

Next, we describe the implementation details of the one-
problem-per-block approach. This includes how the matrix
is distributed across threads, how threads communicate, and
how computation is divided among threads. Results and
analysis with the performance model will follow that.

A. Distributed Data Layouts
Even though threads have access to a global memory

space, the thread block is essentially a distributed system.
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Figure 6. A 2D cyclic layout (left) and 1D row cyclic layout (right).
Numbers indicate which thread owns each matrix entry.

Each thread represents a machine in the distributed system
and each thread’s register file represents the private memory.
GF100 is a load-store architecture, so all data must be
communicated to the register file even for operations with
shared memory operands. As in any distributed system, a
decision must be made about data layout. We consider three
classic distributed data layouts: 1D row cyclic, 1D column
cyclic, 2D cyclic. A sketch of these layouts is shown in
Figure 6.

The simplest data layouts are 1D row or column cyclic.
In a 1D row cyclic layout each thread is assigned a row
that it stores locally in its register file. If there are more
threads than rows, then a row is divided between several
threads, preferably in a way that divides the number of
elements per thread evenly. 1D column cyclic is similar
except columns are assigned instead of rows. The traditional
advantages of 1D layouts are that either row or column
operations (e.g. computing a Householder reflector) can be
carried out within a thread without any communication. One
major disadvantage is the load imbalance that occurs in
factorizations that proceed from left-to-right, as one thread
must drop out after each column is processed.

In a 2D layout, threads own elements from several rows
and several columns. We consider a 2D cyclic layout in
which elements are distributed evenly throughout the matrix.
The 2D cyclic layout mitigates the load imbalance problem
inherent in 1D-layout one-sided factorizations, but it intro-
duces communication between (√p) threads for both row
and column reductions. This can be seen as a compromise
between the 1D row and 1D column layouts.

Figure 7 shows the performance we achieved using 1D
row and column layouts and 2D cyclic on solving systems of
equations using a Householder QR factorization followed by
Gaussian elimination of the upper triangular result. Due to
the large amount of column-wise communication inherent in
the Householder QR algorithm, one expects the 1D column-
cyclic layout to be considerably faster than the 1D row-cyclic
layout. The 2D layout dominates 1D layouts in all tested
cases, so we will use this layout by default for the remainder
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Figure 7. Solving 10,000 single-precision linear systems using QR with
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of the paper. The MAGMA BLAS library for GPUs also uses
a 2D register layout for their matrix-matrix multiply routine
[17].

B. Implementation Details
We implemented the factorizations described in Sec-

tion III using the one-problem-per-block approach for
both square and non-square matrices. The problem dimen-
sions are hardcoded because register file indices must be
known at compile time. However, each implementation is
parametrized with compile-time constants. This allows the
same code to be compiled for problems of several different
sizes and shapes.

The matrix is stored in the register file in a 2D cyclic
layout. The following code loads the matrix from DRAM
to the register file. WREG and HREG are the width and
height, respectively, of the registered sub-matrix. RDIM is√
p, where p is the number of threads in a block. The global

pointer d A has already been offset to point to the correct
matrix for this block and the correct starting location in the
matrix for this thread. This code achieves over 90 GB/sec.
for most matrix sizes and thread configurations despite some
non-contiguous memory accesses.

#pragma u n r o l l
f o r ( i n t j = 0 ; j < WREG ; j ++)

f o r ( i n t i = 0 ; i < HREG ; i ++)
A[ i ] [ j ] = d A [ i ∗RDIM + j ∗RDIM∗ l d a ] ;

Listing 4. Loading a matrix into the register file

To begin a factorization, we must modify a column, typ-
ically either scaling it or normalizing it, and then copy that
column to shared memory. There it can be used to update the
trailing matrix. Scaling the vector requires a broadcast of the
scaling factor. Normalizing the vector requires a reduction
followed by a broadcast of the norm. The following code,
found in LU and Gauss-Jordan, creates a scale factor and
assigns it to scale. This is a shared memory variable. The

variable N indicates the panel being factored (0 through n√
p ).

Variable j is the location of the column being scaled in the
panel. Variable col is the thread’s column location in the
column panel, and tid is the thread’s row location in the row
panel. Alternatively, since threads are laid out in a √

p×√
p

grid, (tid,col) are the thread’s coordinates in that grid.

i f ( t i d == j && c o l == j ) {
i f (A[N] [N] ! =ZERO){ s c a l e = ONE/A[N] [N] ; }
e l s e { s c a l e = ZERO; ∗ n o t s o l v e d = 1 ;}

} s y n c t h r e a d s ( ) ;

Listing 5. The thread on the diagonal determines the scaling factor and
assigns it to shared memory

Scaling and copying the column vector from the matrix in
the register file to shared memory looks like the following.

i f ( c o l == j ) {
# pragma u n r o l l
f o r ( i n t i i = N ; i i < HREG ; i i ++)

l [ c o l + i i ∗RDIM] = A[ i i ] [N] ∗ s c a l e ;
}

Listing 6. Scaling while extracting a column from the matrix in the register
file to a vector l in shared memory.

Finally, updating the trailing matrix involves matrix-vector
operations such as matrix-vector multiply and rank-1 update.
A matrix-vector multiply requires many reductions across
threads and is not shown here. The following is a rank-1
update in which two shared memory vectors l and u are
broadcast to update the trailing sub-matrix in A.

#pragma u n r o l l
f o r ( i n t i i = N ; i i < HREG ; i i ++)

f o r ( i n t j j = N ; j j < WREG ; j j ++)
A[ i i ] [ j j ] −= l [ t i d + i i ∗RDIM]

∗ u [ c o l + j j ∗RDIM ] ;

Listing 7. Rank-1 update of a by shared vectors l and u

The column operation and trailing matrix update are
encapsulated in a loop over columns from 0 to RDIM.
This loop completes the factorization of an entire panel and
updates the trailing matrix. To factor more than one panel,
we encode the panel factorization and trailing matrix update
as a C++ template and use tail recursion to unroll the entire
factorization. Unrolling is necessary because all accesses to
the register file must be known at compile time. Register
file arrays cannot be indexed by loop indices, for example.
N is a template parameter indicating the current panel that
begins at zero. The base case for the recursion is when N =
WREG and the factorization is complete.

C. Measured Performance
The average number of cycles measured for a 56x56

single-precision LU and QR factorization for the one-
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Figure 8. The number of cycles spent in each panel of QR measured (left) and modeled (right) for a 56x56 single-precision matrix broken down between
the three main operations and measurement overhead. As the factorization proceeds the matrix becomes smaller so each panel takes less time.

Load Compute Store
LU 8800 68250 8740
QR 9120 150203 9762

Table V
CYCLE COUNTS FOR 56X56 LU AND QR DECOMPOSITIONS

problem-per-block approach is shown in Table V. The
cycles are broken down between memory access time and
on-chip compute time. For the 56x56 size, the GPU is
executing eight thread blocks per multiprocessor for a total
of 14× 8 = 112 problems simultaneously across the entire
chip. Each thread block has 64 threads. The measured 9000
cycles for reading and writing seems to indicate that the
warp scheduler is overlapping some global communication
with computation so that fewer than 8 thread blocks are
competing for memory bandwidth at a time. If all 8 thread
blocks were able to load the matrix in 9000 cycles this would
mean we were achieving nearly double the peak bandwidth
that we measured earlier.

Again, we used the compiler flag --use_fast_math

which allows for the use of hardware reciprocal and square
root functions that are accurate up to 22 mantissa bits [18].
For this approach, not using the hardware functions resulted
in a median performance penalty of 30%.

The measured compute times are broken down further
in Figure 8 into panels and operations within each panel.
Each panel has √

p columns, so there are 7 panels in a
56x56 matrix with 64 threads. With each new panel the
matrix becomes smaller by √

p rows and √
p columns, so

the total time needed to factor that panel and update the
trailing matrix decreases over time. Figure 9 also contains
our model’s estimated cycle counts for the same operations.
The next section will explain how these estimates were
generated.

D. Modeling Performance

We estimate the performance of LU and QR using the
one-problem-per-block approach by counting the number of
FLOPs, accesses to shared memory, and thread synchroniza-
tions present in our implementation. We assume there is no
overlap of either shared or global memory communication
and computation. Code essentially similar to those of our
LU and QR compose the Gauss-Jordan and least squares
solvers. Therefore, we will not analyze them here.

We are not attempting to define upper or lower bounds
for the performance on these problems. Rather, we are just
trying to understand and predict why our specific imple-
mentation goes the speed it does and where specifically the
time goes. There are certainly other ways to solve these
problems in the thread block that may perform more or less
communication.

The following paragraphs describe how we arrived at
the computation and communication estimates for our LU
and QR implementations. The final estimates are shown in
Table VI. For the purposes of this analysis, a floating-point
multiply-add is counted as one γ because the pipeline is
dual-issue.

This LU implementation can be broken down into two
phases: the column operation and the trailing matrix update.
Each happens n−1 times where n is the number of columns
in the matrix. To compute and communicate the scale factor,
the column operation requires a division followed by a
shared memory write and a synchronization. Then there
is another shared memory read of the scale factor and N
FLOPs to scale the column, where N is the height of the
current column divided by the √

p threads in that column,
rounded up if necessary. Finally, the column l and row u
are written into shared memory, which requires 2∗N shared
memory accesses and a synchronization at the end. These
writes cannot happen in parallel because the thread on the



diagonal owns some of both l and u. The panel update is a
rank-1 update. Each thread must read N elements from both
l and u for a total of 2 ∗N shared memory accesses. Then
each thread performs N2 FLOPs and 1 synchronization at
the end.

For the QR factorization we choose to do serial reductions
instead of parallel. Each reduction is across √

p threads so
costred will be (1 +

√
p)β +

√
pγ. For the matrix-vector

multiply we assume that there are at least as many threads
as columns so the total cost will be the costred. A column
norm reduction will have the same cost as a matrix-vector
multiply reduction even though only one thread is needed
for the column norm reduction.

The column operation of the QR factorization requires N
FLOPs plus a reduction by thread 0 to compute the norm.
Then thread 0 computes the scale factor that does a square
root, two divides, and two multiplies, followed by one shared
memory write of the scale factor. Then the column is scaled
and written to shared memory, which requires a read of the
scale factor, N FLOPs, and N writes to shared memory
followed by synchronization. The trailing matrix update does
N shared memory reads to get the Householder vector.
Then there is a matrix-vector multiply with is N2 FLOPs,
a synchronization, a reduction, and another synchronization.
Next there is a rank-1 update which involves N reads from
shared memory of the matrix-vector multiply result, N2

FLOPs, and finally a synchronization at the end. There are
a total of (n − 1) column and trailing matrix operations in
QR.

LU Estimates

Column
γdivαsync Thread 0 compute scale factor

2β Write and read scale factor
Nγ Scale l vector

2Nβ + αsync Write l & u to shared
Trailing Matrix

2Nβ Read l & u from shared
N2γ + αsync Rank-1 update

QR Estimates

Column
Nγ Column norm

(1 +
√
p)β +

√
pγ) Thread 0 norm reduction

γsqrt + 2γdiv + 2γ Thread 0 compute scaling factor
2β Write and read scale factor

Nγ +Nβ + αsync Column scale & write to shared
Trailing Matrix

Nβ Read Householder vector
N2γ Matrix-vector multiply

2αsync + (1 +
√
p)β +

√
pγ Matrix-vector multiply reduction

Nβ +N2γ + αsync Rank-1 update

Table VI
ESTIMATES OF THE FLOPS, SHARED MEMORY COMMUNICATION, AND

SYNCHRONIZATION DONE IN LU AND QR

We calculate total cycles by plugging in the parameter

values from Section II and adding the cost of reading and
writing the matrix from DRAM. We use the division and
square root cycle times from a previous benchmarking paper
on the GT200 architecture [23]. To derive global GFLOPS
estimates from the number of cycles predicted by the model,
we multiply the FLOPs done by a single thread block by
the total number of blocks executed simultaneously on the
chip. Then we divide that by the number of cycles, and
multiply by the number of cycles per second. The number
of simultaneous blocks is given by the CUDA occupancy
calculator.

Figure 9 shows the performance of LU and QR using the
one-problem-per-block approach. The dashed lines indicate
the performance predicted by the model including the band-
width cost to get the matrix to and from DRAM. Again we
can see the effect of register spilling when the number of
registers per thread meets or exceeds 64. This spilling is not
captured in the model. The abrupt change in performance at
n = 80 occurs because we switch from using 64 threads per
block to 256 threads per block. This reduces the number of
simultaneous blocks per multiprocessor from 8 to 2. Note
that the number of threads must be a perfect square as a
consequence of the 2D layout.

VI. OTHER APPROACHES

A. Hybrid CPU+GPU Blocked

The predominant approach taken by GPU-enabled linear
algebra libraries such as MAGMA and CULA is the hybrid
CPU+GPU blocked approach [5][14]. Panels are factored
on the CPU and sent to the GPU where the trailing matrix
is updated using matrix-matrix multiply. The trick to this
approach is to overlap the communication between CPU and
GPU such that the entire problem can run at the speed of
the GPU matrix-matrix multiply routine. The other benefit
of this approach is that the only GPU code that needs to
be written and optimized is the matrix-multiply routine.
The downside of this approach is clear for small or skinny
problems. In this case the trailing matrix is much smaller
so the majority of the computation, if not all, occurs on the
CPU. The panel width in the current MAGMA release is 96
so all problems less than 96 wide are done entirely on the
CPU.

Figure 10 shows the performance of our approach com-
pared to MAGMA, the state-of-the-art linear algebra library
for GPUs. The library does not provide the ability to run
multiple problems simultaneously so we put a loop around
the function call and run each problem sequentially. We call
the routines in which data starts and ends on the GPU. As
this plot illustrates, MAGMA is inefficient for small prob-
lems and the overall design space is not flat. For very large
problems MAGMA is very fast, for reasons we describe
below. However, for small problems our implementation up
to two orders of magnitude faster.
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Figure 9. The performance of 8,000 LU and QR factorizations with the one-problem-per-block approach. The dashed line indicates the model-predicted
performance. The sharp drop from 64 to 80 happens because we switch from 64 to 256 threads. The false predictions at 64 and above 112 are due to
register spilling, which our model does not consider.
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Figure 10. The design space for different sized problems is not flat. Our two approaches perform well for thousands of small problems and the MAGMA
Hybrid GPU+CPU blocked approach performs well for single large problems.
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Figure 11. Comparison of the one-problem-per-block approach to Intel’s MKL and MAGMA GPU linear algebra library for 8,000 LU and QR factorizations.
Note our implementation does not pivot during Gaussian Elimination and both MKL and MAGMA do pivot. However, the matrices tested were diagonally
dominant so no pivoting was necessary.

B. Intel Math Kernel Library (MKL)

Figures 11 and 12 show the performance of our one-
problem-per-block approach compared to both MAGMA and
Intel’s Math Kernel Library (MKL) on an Intel Core i7-2600.
We distribute the problems evenly across all four cores using
pthreads. MAGMA performance is shown for two routines.
In the first case the data starts on the CPU. In the second case

the data starts on the GPU. The CPU-start is faster because
MAGMA solves these problems mostly on the CPU anyway.

These are not ideal comparisons because both MAGMA
and MKL do partial-pivoting for LU, while ours does not.
However, we ran these examples on diagonally-dominant
matrices so no pivoting was necessary. We also use the
hardware reciprocal and square root on the GPU, while both
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Figure 12. Comparison of the one-problem-per-block approach to Intel’s MKL for solving 8,000 linear systems with QR and Gaussian Elimination. Note
our implementation does not pivot during Gaussian Elimination.

MAGMA and MKL use full-precision functions on the CPU.

C. Using CUBLAS and CUDA Streams
In our implementations we mapped small problems to

the GPU memory hierarchy, first to the thread level (one-
problem-per-thread), then to the block level (one-problem-
per-block). It is also possible to solve these problems at
the global level. In this case we can use CUBLAS to do
column norms and scales, matrix-vector multiplies, rank-1
updates, and trailing matrix-matrix updates. Since CUBLAS
allows for multiple streams we can even call these operations
in parallel over multiple problems. However, this approach
does not take advantage of the memory hierarchy except for
the trailing matrix-matrix multiplies, which are small for
these problem sizes. Furthermore, it is practically difficult
to get the current GPU to do small CUBLAS routines, such
as column norms, in parallel in a fine-grained manner. As a
result, our blocked implementation of QR using CUBLAS
showed no benefit from using multiple streams. We could
achieve better performance solving the problems sequen-
tially on the CPU.

VII. APPLICATION: SPACE-TIME ADAPTIVE RADAR
PROCESSING (STAP)

Size # Matrices GPU GFLOPS MKL GFLOPS Speedup
80x16 384 134 5.4 25×
240x66 128 99 36 2.8×
192x96 128 98 27 3.6×

Table VII
RESULTS ON SINGLE-PRECISION COMPLEX QR FACTORIZATIONS FROM

RT STAP BENCHMARK

Space-time adapative processing is a computationally
demanding radar processing algorithm. STAP has many
computational phases; however, the most demanding phase
is multiple simultaneous complex QR decompositions. The
challenge of obtaining real-time performance has resulted in
several application specific parallel machines[15], [7].

While the size of the QR decomposition depends on the
specifics of the radar system, the official MITRE RT STAP
benchmark [8] specifies several sizes for the complex QR
decomposition which we use for benchmarking. We also test
the 192x96 size which was used in a paper for the Imagine
stream processor [9]. We consider only single precision
complex datatypes. The total number of FLOPs done is
8mn2 − (8/3)n3.

Our performance is shown in Table VII. The 80x16
problem fits in a single thread block so it is relatively
straightforward to solve. On the other hand, the larger size
does not fit in a single thread block so we employ a
sequential tiled QR factorization algorithm similar to the
approach in the PLASMA multicore linear algebra library
[5]. The 240x66 problem performs somewhat more slowly
than the others because it does not fit well in our block sizes
so some of the register file space is being wasted.

VIII. CONCLUSIONS

We examined the problem of doing many thousands of
small dense linear algebra factorizations simultaneously on
a GPU. Very small problems (e.g. n < 16) can be efficiently
solved by assigning one problem per thread and factoring
each problem locally in the register file. This approach is
optimal for problems that fit entirely in the register file.
For larger problems it makes sense to assign an entire
thread block to a single problem because this gives higher
arithmetic intensity and requires fewer problems to saturate
the GPU. Tiled algorithms can be used to solve problems
that are too large to fit in a single thread block’s register
file.

Our model considers both global (DRAM-to-processor)
and local (interprocessor) communication. It is accurate for
the LU and QR factorizations we analyzed. These prob-
lems have specific qualities that are motivated our specific
model. First, we assume that global communication happens
separately from local communication. In our case it does
because the factorization takes so many more cycles than



loading or storing the matrix. Second, there is a significant
amount of inter-thread communication that is unlike some
previously-studied computationally intense kernels such as
matrix-multiply. We believe this model is particularly well
suited for other problems that have these two properties.

The NVIDIA streams interface is a step toward a new
style of GPU computing where a diverse set of small things
can be happening simultaneously instead of only handling
large monolithic data parallel computations. This appears to
be an evolutionary process, as the current level of support
for streams is not fine-grained enough to support such a
programming style. However, as the support for streams
improves, it may encourage programmers to think more in
terms of solving problems individually in thread blocks than
with entire grids of thread blocks. The costs captured by our
model, such as shared memory bandwidth and synchroniza-
tion latency, are relevent and necessary considerations for
this style of programming.
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